ePub í Generative Adversarial Networks Cookbook í Josh Kalin
K Is For This book is for data scientists machine learning developers and deep learning practitioners looking for a uick reference to tackle challenges and tasks in the GAN domain Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book About the Author Josh Kalin is a Physicist and Roboticist based in the US focused on the intersection of machine learning robotics and analytics Josh has degrees in Physics Mathematics Computer Science and Mechanical Engineering with studies in machine learning He’s working with Deep Learning Machine Learning and Neural Networks for the past five years He’s used neural networks on everything from forex data to images His current work is focused on GANs and Adversarial examples for Reinforcement Learning techniues He also works in a research group that uses deep learning and machine learning for manufacturing and autonomous systems deployme
Josh Kalin í Generative Adversarial Networks Cookbook doc
Generative Adversarial Networks CookbookAs creating false and high resolution images text to image synthesis and generating videos with this recipe based guide You will also work with use cases such as DCGAN and deepGAN To get well versed with the working of complex applications you will take different real world datasets and put them to useBy the end of this book you will be euipped to deal with the challenges and issues that you may face while working with GAN models thanks to easy to follow code solutions that you can implement right away What you will learn Structure a GAN architecture in pseudocode Understand the common architecture for each of the GAN models you will build Implement the latest GAN architectures in Python and Keras Use different datasets to enable neural network functionality in GAN models Combine different GAN models and learn how to fine tune them Produce a model that can make D models worth D printing Develop a GAN to learn a different type of action seuence Who This Boo